Search results for " Lysophosphatidic Acid"

showing 2 items of 2 documents

NT-3 protein levels are enhanced in the hippocampus of PRG1-deficient mice but remain unchanged in PRG1/LPA2 double mutants

2015

The plasticity-related gene 1 (PRG1) modulates bioactive lipids at the postsynaptic density and is a novel player in neuronal plasticity and regulation of glutamatergic transmission at principal neurons. PRG1, a neuronal molecule, is highly expressed during development and regeneration processes at the postsynaptic density, modulates synaptic lysophosphatidic acid (LPA) levels and is related to epilepsy and brain injury. In the present study, we analyzed the interaction between the synaptic molecules PRG1 and LPA2R with other plasticity-related molecules the neurotrophins. The protein levels of NGF, BDNF and NT-3 were measured using ELISA in hippocampal tissue of homozygous (PRG(-/-)) and h…

0301 basic medicinemedicine.medical_specialtyPhosphatidate PhosphataseHippocampusHippocampal formationHippocampusMice03 medical and health sciences0302 clinical medicineNeurotrophic factorsInternal medicineNerve Growth FactormedicineAnimalsNerve Growth FactorsReceptors Lysophosphatidic AcidMice KnockoutBrain-derived neurotrophic factorbiologyBrain-Derived Neurotrophic FactorGeneral NeuroscienceWild typeMice Mutant Strains030104 developmental biologyNerve growth factorEndocrinologynervous systemBiochemistrySynapsesbiology.proteinPostsynaptic density030217 neurology & neurosurgeryNeurotrophinNeuroscience Letters
researchProduct

Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.

2017

Abstract Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1−/−) mice and PRG-1/LPA2–receptor double knockout (PRG-1−/−/LPA2−/−)…

0301 basic medicinemedicine.medical_specialtyGlutamic AcidNerve Tissue ProteinsBiologyHyperkinesisHippocampusOpen field03 medical and health sciencesBehavioral NeuroscienceGlutamatergicchemistry.chemical_compoundMice0302 clinical medicineLysophosphatidic acidmedicineAnimalsReceptors Lysophosphatidic AcidPsychiatryMice KnockoutNeuronsMental DisordersGlutamate receptorSomatosensory CortexMice Inbred C57BL030104 developmental biologymedicine.anatomical_structurechemistrySynapsesExploratory BehaviorGABAergicCalmodulin-Binding ProteinsFemaleNeuronSignal transductionLysophospholipidsPostsynaptic density030217 neurology & neurosurgerySignal TransductionBehavioural brain research
researchProduct